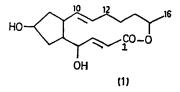
The Biosynthesis of Brefeldin A


By BRIAN E. CROSS* and PAUL HENDLEY

(Department of Organic Chemistry, The University, Leeds LS2 9JT)

Summary In contrast to the observation that palmitate acts as a specific precursor of brefeldin A (1) in *P. cyaneum*, feeding $[16^{-14}C]$ palmitate to *P. lilacinum* gave uniformly labelled brefeldin A.

BU'LOCK and CLAY have reported¹ that one biosynthetic pathway to brefeldin A (1) in *Penicillium cyaneum* involved incorporation of intact molecules of $[9-{}^{14}C]$ palmitic acid. Our work on microbial transformations² with a strain of *P. lilacinum* Thom. (IMI 184496), which was at that time a prolific producer of brefeldin A, appeared to be incompatible with such a biosynthetic route, so we have now examined the biosynthesis of brefeldin A in *P. lilacinum*.

Sodium [16-¹⁴C]palmitate was fed as an aqueous solution to shake cultures of *P. lilacinum* at 48–95 hours after inoculation and the brefeldin A was isolated 10–12 hours later. The incorporations obtained were much lower (0.05-0.54%) than that reported for [9-¹⁴C]palmitate and *P. cyaneum*,¹ but were not unexpected if labelling occurred via β -oxidation of the [16-¹⁴C]palmitic acid to [2-¹⁴C]acetic acid followed by normal polyketide biosynthesis.³ Oxida-

tion of the labelled brefeldin A by the Kuhn-Roth procedure gave C-15 and C-16 (isolated as p-bromophenacyl acetate), and degradation of diacetylbrefeldin A by the method of Sigg³ afforded C-11 to C-16 as hexane-1,5-diol bis-p-nitrobenzoate. The results obtained (Table) show that under our experimental conditions in *P. lilacinum*, the

TABLE

Degradation of brefeldin A^a

		(d. m) 100 s ⁻¹) 1		% I 1	Label 2
Brefeldin A	1-16	87.0	17.68	100	100
<i>p</i> -bromophenyl- acetate	15	9.66	2.94	11.2	16·6 (12·5) ^b
Diacetylbrefeldin A	1	89·3	8.45°	100	100
Hexane-1,5-diol bis-p-nitroben-					
zoate	11	32 ·0	2.78	35.8	32.9(37.5)

^a Recently, *P. lilacinum* has given poor yields of brefeldin which have prevented further biosynthetic work with this organism. ^b Figures in parentheses show the value expected from acetate labelled brefeldin A. ^c Diluted with unlabelled brefeldin A before acetylation.

¹ J. D. Bu'Lock and P. T. Clay, Chem. Comm., 1969, 237.

² B. E. Cross and P. Hendley, unpublished work.

brefeldin A was essentially uniformly labelled and was therefore, not derived from intact palmitate units, but presumably via acetic acid. It would appear, therefore, that further examination of the biosynthesis of brefeldin A by *P. cyaneum* is desirable and that the biosyntheses of other mould metabolites such as palitantin and curvularin, which it has been suggested^{1,4} may be derived from long chain fatty acids, should be investigated experimentally.

Added in proof: Dr. J. D. Bu'Lock has informed us that studies by Dr. G. N. Smith and Mr. P. Page at the University of Manchester on the metabolism of various labelled fatty acids by *Penicillium brefeldianum* lead to the same conclusion, and that he wishes to withdraw the conclusions in his earlier publication. A full account of the work is in preparation.

(Received, 29th November 1974; Com. 1449.)

³ U. Handschin, H. P. Sigg, and Ch. Tamm, *Helv. Chim. Acta*, 1968, 51, 1943; R. G. Coombe, P. S. Foss, and T. R. Watson, *Chem. Comm.*, 1967, 1229.

⁴ E.g., W. B. Turner, 'Fungal Metabolites,' Academic Press, New York, 1971, p. 72; T. Williams, A. Stempel, R. H. Evans, A. Jacoby, and J. W. Westley, *Experientia*, 1973, 29, 257.